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Abstract-The equations for convective diffusion to a rotating disk are solved numerically for the case 
where a consolute point is found between the concentration in the bulk and that at the surface. A singular- 
perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the 
consolute-point composition. Results are compared to Levich’s solution for constant properties and with 

his analysis of an experimental system. 

INTRODUCTION 

THE DRIVING force for diffusion is the gradient of 
chemical potential of the diffusing species. Usually, 
one defines the diffusion coefficient in terms of a gradi- 
ent in concentration. Thus, in the vicinity of a con- 
solute point, the temperature and composition where 
two liquid phases become completely miscible, this 
diffusion coefficient becomes zero. Krichevski and 
Tshekhanskaya [I] and Vitagliano et (11. [2] observed 
this experimentally in the water-triethylamine system. 
Krichevski and Tshekhanskaya also measured the 
rate of dissolution of a rotating disk of terephthalic 
acid in the water-triethylamine system. Levich [3] 
examined this system theoretically, accounting for 
variations in the diffusion coefficient with the con- 
centration of triethylamine as well as the effects of 
variable physical properties on the hydrodynamics. 
However, Levich made a number of untenable 
assumptions, which call to question the validity of 
his conclusions. Although the behavior of transport 
properties at a consolute point is often discussed in the 
literature (see Sengers [4] and Cussler [5] for example). 
convectivediffusion problems when a consolute point 
is present in the system have not been addressed other 
than in Levich’s original work. 

Our objective is to re-examine convective diffusion 
to a rotating disk theoretically, without arbitrary 
assumptions, and to elucidate better the behavior of 
the system in the region of the consolute point. In the 
analysis below we do not consider variations in the 
density or viscosity. Clearly, variations in physical 
properties affect the hydrodynamics and convective 
diffusion to the disk. Nevertheless, these effects are 
omitted here for two reasons. First, Hsueh and New- 
man [6], and others [7, 81 have treated variable physi- 
cal properties previously. Second, variations in the 
hydrodynamics will have only a secondary effect on 
convective diffusion near the consolute point and will 
add little to our understanding of the behavior in this 
region. The principal effect we wish to investigate is 
the consequence of a zero diffusion coefficient at a 
point in the flow and mass-transfer process. 

ANALYSIS 

The rotating disk is uniformly accessible to mass 
transfer. The convective diffusion equation in terms 
of the mass fraction of reacting species in a binary 
fluid is [9] 

The general boundary conditions considered are 

0 = c-0, atz=O 

01 =w, atz= co 

At high Schmidt number, the diffusion layer is much 
smaller than the hydrodynamic boundary layer, and 
the velocity normal to the surface of the disk may be 
accurately written as [3] 

[,: = -K=* = -a~3/*v- wz*. (2) 

With the dimensionless variable 

where 5 can be regarded as the axial distance z divided 
by the thickness of the diffusion layer and D, is the 
value of the diffusion coefficient at infinite dilution, 
equation (I) becomes 

(4) 

The implicit solution to equation (4) is 

(5) 

For constant diffusion coefficients, Levich gave the 
solution 
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NOMENCLATURE 

LI constant, 0.51023 )‘# activity coefficient 
A cl W/d.u at s = 0 E parameter defined in equation (13) 
A:, Margules constant 0 dimensionless concentration 
B constant in equation (I 6) 1’ kinematic viscosity [cm’s ‘1 

BYI? Margules constant 5 dimensionless distance 
D diffusion coefficient [cm’ s- ‘1 density [g cm - ‘1 

Q parameter used in equation (9) r2 rotation speed [rad s- ‘1 
G’ Gibbs energy [J mol.. ‘1 w mass fraction. 

.i dimensionless flux defined in equation (24) 
K parameter in equation (2) 
/I massflux[gcm-‘s-‘1 Subscripts 
c, velocity normal to disk [cm s- ‘1 m far from disk 
W dimensionless concentration 0 surface ofdisk, infinite dilution 
.Y distorted dimensionless distance variable C critical or consolute value. 
si mole fraction 
z distance from surface of disk [cm]. 

Superscripts 
Greek symbols - inner region variable 

I- gamma function w outer region variable. 

I 

s; 

diffusion coefficient is zero at the consolute point. 
@= ~ c“ds. 

l-(4/3) ,I 
(6) Additionally, one sees that in the vicinity of the con- 

solute point the diffusion coefficient may be approxi- 
When the diffusion coefficient is a function of con- mated by 

centration, equation (5) can be integrated numeri- 
cally, iteration being necessary because D depends on 
w. For a solution with a consolute point, however, 
the diffusion coefficient becomes zero at some value 
of 5, and equation (5) cannot be integrated directly. 

The diffusion coefficient based on a concentration 
driving force can be related to a diffusion coefficient 
based on a chemical-potential driving force through 
an activity correction 

(7) 

If  the Gibbs energy is expressed by a three-suffix 
Margules equation. then the activity coefficient for a 
two-component solution is given by 

At the consolute point 

If  the concentration at the consolute point is known, 
these relationships allow the evaluation of the two 
constants in equation (8). Reference [I] gives the con- 
solute point for the water-triethylamine system as 
17°C and 0.261 mass fraction of triethylamine. These 
values are not in exact agreement with others reported 
in the literature [IO] but suffice to illustrate our tech- 
nique. Using a three-suffix Margules equation and the 
molar masses of the components, it is evident that the 

D = D&J--u,)~. (9) 

Similar behavior is observed in other systems [I I]. 
In order to solve the convective diffusion equation 

in the vicinity of the consolute point, we should for- 
mulate the problem so that the singularity is removed. 
The flux near the consolute point is 

II dw 
-= -Dx+/lcwc 
P 

(10) 

Variations in the velocity and flux are small compared 
to variations in the diffusion coefficient and con- 
centration in this region ; and, assuming that the 
diffusion coefficient is of the form given in equation 
(9) we conclude that in the vicinity of the consolute 
point 

where I, is the distance from the surface of the disk 
to the consolute point, also called the critical distance. 

The problem was reformulated with the following 
variables 

s = -(z--J”3 
ii3 and W= 1-w. W) 

z, WC 

Thus equation (I) becomes 

where E is defined by 
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This can be split into two first-order differential 
equations 

DC DC 
and solved as an initial value problem with the bound- 
ary conditions 

w = 0. P = P,, at .Y = 0. 

Equations (14) were solved using a Runge-Kutta 
routine. E was fixed, corresponding to a given critical 
distance. At s = 0 the value of P,, was adjusted until 
the calculated surface concentration was zero. Then 
with the known value of P,. the equations were inte- 
grated from .Y = 0 to -o to determine the value for 
the concentration far from the disk. 

Assuming equation (9) is valid near the consolute 
point does not restrict the validity of the method. It 
is important that the diffusion coefficient does vary 
as shown in equation (9) only in the vicinity of the 
consolute point. In the analysis below, we assume that 
the functional form of equation (9) is valid over all 
compositions only to illustrate more clearly our 
method without the introduction of detailed physical- 
property variations, which would restrict our results 
to only one physical or chemical system. Figure I 
shows the concentration profiles plotted against <, 
which is related to s by 

As the bulk concentration is raised, the consolute 
point moves closer to the surface of the disk, and the 
slope d Wjds at this critical distance increases. For 
values of E > 2. solutions were not possible. We 
wished to investigate the behavior when the bulk con- 

FIG. I. 

centration was arbitrarily close to that of the con- 
solute composition, and to determine the maximum 
value of E. 

PERTURBATION ANALYSIS 

As w, is lowered toward the consolute-point com- 
position, E increases, and d W/ds at s = 0 appears to 
be approaching zero. Suppose there is a value of I: for 
which d W/d.r = 0 at .Y = 0. The solution in the outer 
region would then be W = 0 for .V < 0. For .Y > 0 look 
for a solution of the form 

w = A.\-+Bs’+..~ (16) 

nears = 0. Substituting into the differential equation 
and equating equal powers of s gives 

4AB=c. 

If  E approaches a limit, somewhat less than I .8, then 
B approaches infinity as A goes to zero. The region 
where 

A.Y z Bs’ 

defines an inner region (in the sense of a singular- 
perturbation expansion). Let 

.YE 
S= 4A’ and &= $ W. (17) 

The problem in the inner region becomes 

(I- (4;;774$&(~df) (18) 

with the boundary conditions 

@=O and 
dti 
ds = I at s = 0. 

To a zeroth approximation, m satisfies 

0 1 2 

5 

Concentration profiles-for bulk concentrations above, below, and at (dashed line) the 
point composition. 

consolute- 
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(19) 

with the implicit solution 

163’ 
--=2P’-W+iln(l+4@). 

3 
(20) 

The outer region satisfies equation (14). Let 
1 = .Y’ ‘, and the problem becomes 

The solution must match the inner solution as ,f + 0 

lE I:? 
w+- .i 

0 3 
as ,? + 0, 

and 

W= 1 at?= 1. 

Thus E can be adjusted to give W = 1 at .f  = 1. The 
numerical solution gives E = 1.9967. The con- 
centration profile for this condition is the dashed line 
in Fig. 1. 

MASS TRANSFER 

The rate of mass transfer to the surface of the disk 
is given by 

-= -02 
n 

P dz ;=,,’ 

The coordinate transformation allows us to define a 
dimensionless rate of mass transfer j and to express 
it as 

For a constant coefficient of diffusion, equation (6) 
shows that j takes the limiting form 

Figure 2 shows the flux to the surface of the disk 
from our numerical calculation as compared with the 
theoretical line predicted by equation (25). 

DISCUSSION 

From Fig. 1, one observes that the consolute point 
moves farther from the surface of the disk as the bulk 
concentration is decreased and reaches a maximum 
distance 5 = 0.6054 when the bulk concentration 
equals the consolute composition. As the con- 
centration becomes closer to W, from below the critical 
value, the slope of the concentration profile increases 
sharply and is infinite when the consolute point is 
reached. 

At low values of w,, the diffusion coefficient is 
nearly constant, and the profile approaches that pre- 
dicted by equation (6). The rate of mass transfer is 
therefore identical to that predicted by equation (25) 
the dashed line in Fig. 2. 

As the consolute point is approached, the diffusion 
coefficient becomes smaller, and the rate of mass 
transfer is reduced as seen by the leveling off of the 
solid line in Fig. 2. This does not continue indefinitely 
because there is a competing effect. As the bulk 
concentration is increased above the consolute- 
point composition, the diffusion coefficient increases 
sharply, and the critical distance moves toward the 
disk. Thus. the rate of mass transfer becomes larger 
than that predicted by equation (25). The leveling 
off was observed experimentally by Krichevski and 

FIG. 2. Rate of mass transfer to the surface of a rotating disk. Dashed line is that predicted by equation 
(25) for a constant diffusion coefficient. 
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Tshekhanskaya [I] and predicted by Levich [3]. 
The concentration range of Krichevski and 
Tshekhanskaya’s experiments was not large enough 
to verify the up-turn in the rate of mass transfer. 

Levich arbitrarily divided the problem into three 
regions: (a) far from the disk the concentration 
was constant and equal to the bulk concentration ; 
(2) close to the disk the concentration varied ap- 
proximately linearly with distance from zero to the 
consolute composition; and (3) a thin intermediate 
region showed negligible resistance to mass transfer. 
Figure I clearly contradicts this picture. 
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